Physics Dashboard

Interactive calculators and visualization tools for exploring the relationships between key physics concepts in Pais's work. Experiment with different scenarios and compare theoretical predictions with experimental limits.

4
Calculators
Scenarios
3
Force Types
25+
Parameters

Schwinger Limit Calculator

Interactive tool to explore electromagnetic field thresholds and energy densities

Electromagnetic Field Configuration

Adjust electromagnetic field strengths to calculate energy densities and approach to Schwinger limit

1.32e+18
V/m
10¹² V/mSchwinger: 1.32×10¹⁸ V/m2×10¹⁸ V/m
4.41e+9
T
10⁶ TSchwinger: 4.41×10⁹ T10¹⁰ T

Energy Density

1.54e+25
J/m³
Progress to Schwinger Limit154.50%
CRITICAL LEVEL

System Status

SCHWINGER LIMIT EXCEEDED

Vacuum breakdown! Virtual particles become real. Spacetime structure may be altered.

Electric contribution:7.71e+24 J/m³
Magnetic contribution:7.74e+24 J/m³
Total energy density:1.54e+25 J/m³

Experimental Context

Laboratory Record
Strongest static magnetic field: ~45 T
Strongest electric field: ~10¹² V/m
Pulsed Records
Pulsed magnetic fields: ~1000 T
Laser electric fields: ~10¹³ V/m
Pais Patents
Claimed magnetic field: >4×10⁹ T
Target energy density: 10²⁵ J/m³

Force Law Comparison

Compare gravitational, electrostatic, and strong forces across different scales

Force Calculation Parameters

Adjust parameters to compare the three fundamental forces at different scales

1.00e-15
meters
10⁻¹⁸ mQuantum scale10⁻¹⁰ m
1.60e-19
C
0.1eElementary charge10e

Gravitational Force

1.86e-34
Newtons
SUBDOMINANT

Electrostatic Force

2.31e+2
Newtons
SUBDOMINANT

Strong Force

2.31e+3
Newtons
DOMINANT

Force Magnitude vs Distance

Logarithmic scale comparison showing how forces change with distance

Key Insights

Scale Dependence

  • Strong force dominates at quantum scales (< 10⁻¹⁵ m)
  • Electrostatic force important at atomic scales (10⁻¹⁰ m)
  • Gravitational force only relevant at macro scales

Unified Structure

  • All three forces follow F = k(charge₁)(charge₂)/r² structure
  • Different force carriers: mass, electrostatic charge, strong charge
  • Same mediator constant (G, kc, kc) for their respective domains

Energy Scale Visualizer

Visualize energy densities from everyday scales to Schwinger limits

Energy Scale Comparison

Visualize energy densities from everyday scales to the Schwinger limit threshold

10⁻²¹Energy Scale (J or J/m³)10²⁶
Room Temperature
4.0e-21
EVERYDAY

Thermal energy at 300K

Chemical Bond
1.6e-18
MOLECULAR

Energy to break a chemical bond

Visible Light Photon
4.0e-19
ELECTROMAGNETIC

Energy of visible light photon

Nuclear Binding
1.6e-12
NUCLEAR

Energy binding nucleus

Proton Rest Energy
1.5e-10
PARTICLE

E=mc² for proton

Lightning Strike
5.0e+9
EXTREME

Total energy in lightning bolt

TNT Explosion
4.6e+6
EXTREME

1 kg TNT equivalent

Schwinger Threshold
1.0e+25
SCHWINGER

Critical energy density J/m³

Comparative Analysis

Key Ratios

Schwinger vs Room Temperature:2.5e+45
Schwinger vs Nuclear Binding:6.2e+36
Schwinger vs Lightning:2.0e+15

Schwinger Implications

Energy density 10⁴⁶ times greater than room temperature
Would break down the quantum vacuum structure
Virtual particles become real (Schwinger effect)
Potentially enables temporal manipulation

Patent Specifications Comparison

Compare technical specifications across different Pais patents

Patent Technical Specifications

Compare technical specifications and requirements across different Pais patents

energy Comparison

Plasma Fusion
1.00e+18
Energy Gain Ratio
Mass Reduction
1.00e+6
Watts Input
EM Generator
1.00e+5
Estimated Watts
Superconductor
0
Energy Loss

Inertial Mass Reduction

US10144532B2
Expired
energy Input
Megawatt range
operating Freq
Microwave range
field Strength
High electromagnetic
critical Parameter
Vacuum polarization
Applications
Aerospace
Underwater
Space travel
Critical Parameter
Vacuum polarization

Plasma Compression Fusion

US20190295733A1
Application
energy Output
Gigawatt to Terawatt
energy Input
Kilowatt to Megawatt
energy Gain
&gt;10¹⁸
plasma Core Temp
&gt;175 million °C
magnetic Field
&gt;4 × 10⁹ T
energy Density
10²⁵ J/m³
critical Parameter
Energy density threshold
Applications
Clean energy
Temporal effects
Critical Parameter
Energy density threshold

Electromagnetic Field Generator

US10135366B2
Granted
vibration Freq
High frequency
field Type
Electromagnetic
material
Ferroelectric ceramics
critical Parameter
Ferroelectric resonance
Applications
Defense shielding
Asteroid deflection
Critical Parameter
Ferroelectric resonance

Room Temp Superconductor

US20190058105A1
Application
operating Temp
Room temperature
resistance
Zero
method
Pulsed current + vibration
critical Parameter
Cooper pair formation
Applications
Power transmission
Quantum computing
Critical Parameter
Cooper pair formation

Gravitational Wave Generator

US10322827B2
Granted
wave Type
Gravitational waves
method
Intersecting EM fields
cavity Type
Gas-filled
critical Parameter
Field intersection
Applications
Propulsion
Communication
Asteroid deflection
Critical Parameter
Field intersection

Technical Analysis

Energy Requirements

Plasma Fusion: Highest energy output potential (TW)
Mass Reduction: Significant energy input required (MW)
Superconductor: Zero energy loss once established
EM Generator: Moderate energy for field generation

Implementation Challenges

• Extreme magnetic fields (>10⁹ T) unprecedented
• Energy densities approach Schwinger limit
• Material science limitations for components
• Theoretical physics not fully validated

Dashboard Usage Guidelines

Interactive Exploration

  • Use sliders to adjust parameters in real-time
  • Watch for threshold warnings when approaching critical values
  • Compare theoretical predictions with experimental data
  • Experiment with "what-if" scenarios safely

Safety Considerations

  • Red zones indicate dangerous energy levels
  • Schwinger limit breach has unknown consequences
  • These are theoretical calculations only
  • Do not attempt to replicate extreme conditions